

Bladder-type accumulator

RE 50170/02.12 Replaces: 12.10

Table of contents

Type HAB

Contents	Page
Features	1
Ordering code	2
Operating instructions and declarations of conformity	2
Function, section, symbol	3
Technical data	4
Application, mode of operation	5
Calculation	5 to 10
Unit dimensions, standard types	11
Accessories	12 to 16
Intended use	17
Safety instructions for hydraulic accumulators	17
Legal provisions	17
Safety devices	17

Features

CE

- ge - Hydraulic accumulator as per Pressure Equipment Directive 97/23/EC 1 2
 - Bladder material for different applications
 - Use:

- Energy storage in systems with intermittent operation
- Energy reserve for emergencies
- Compensation of leakage losses
- Shock and vibration absorption
- Volume compensation in case of pressure and temperature changes

Certification:

- CE label (according to DGRL 97/23EC)
- GOST label
- ASME label (according to RA 51350)

Information on available spare parts: www.boschrexroth.com/spc

Ordering code

	HAB	<u> </u>	<u>+</u> 4	IX/ 2	2	G	<u>+</u> 2		1		1	1		-	- *	
Nominal volume	<u> </u>					- -		•	<u> </u>							Further details in the
1 liter	= 1															plain text
2.5 liters	= 2,5															e.g. special versions
4 liters	= 4														Cer	tification (acceptance)
6 liters	= 6													C	E = /	Acceptance according to
10 liters	= 10															97/23/EC
20 liters	= 20															= Acceptance according
35 liters	= 35															ssudarstweny STandard
50 liters	= 50													B	4 =	Instructions for use
Max. admissible op	erating pre	ssure											S	urfa	ce o	f the connection side ¹⁾
350 bar (1 to 6 liters) =	350											1 =			Steel
330 bar (10 to 50 lite	ers) =	330												S	Surfa	ace of the tank inside1)
Component series											1	=				Steel
Component series 4	0 to 49	:	= 4X													Tank material ¹⁾
(identical installation		ection								1 =						Steel
dimensions)									L							Bladder material ¹⁾
Gas filling pressur	е							N	=							NBR
2 bar				= 2				E	=							ECO
Connection size for	r hydrauli	c fluid	1)					L								Gas port form
G 3/4	-			= (G05		2 :	=				G	as v	valve	for	filling and testing device
G 1 1/4				= (G07											(see page 14)
G 2				= 0	G09											()
Mounting type (oil	port form)														
Thread with sealing	•				=	_										

Order example: HAB10-330-4X/2G09G-2N111-CE

¹⁾ Other variants upon request

Standard types see page 11

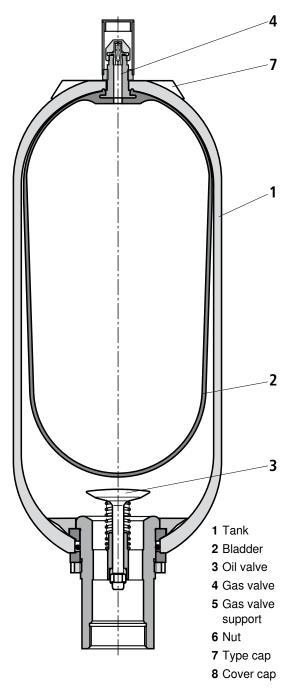
Operating instructions and declarations of conformity

Operating instructions applicable to HAB1 to HAB50

Language	Operating instructions Material no.
German	R901200925
English	R901200926
French	R901200927
Spanish	R901200928
Italian	R901200929
Chinese	R901200930
Russian	R901200931
Norwegian	R901200932
Polish	R901278729
Czech	R901278730
Hungarian	R901301675
Romanian	R901289016

Declarations of conformity

Language: German, English, French


N	CE - Declaration	n of conformity				
Nominal volume	Bladder material NBR	Bladder material ECO				
Volume	Material no.	Material no.				
11	-	-				
2.5						
41	R901200940	R901200942				
61						
10						
20	R901200941	R901200943				
35 I	N901200941	n901200943				
50 I						

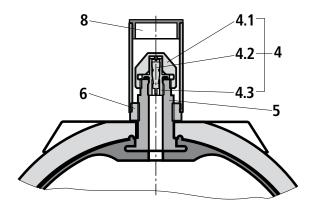
Function, section, symbol

General

Hydraulic accumulators are hydrostatic devices that are able to save a certain amount of energy and release it to the hydraulic system, if necessary.

Liquids are only compressible to a very small extent; gases, however, are very compressible. The working principle of all gas-filled hydraulic accumulators is based on that difference.

Depending on the design of the separating element, you distinguish between bladder-type and diaphragm-type accumulators. Hydraulic accumulators basically consist of a liquid and a gas part with a gas-tight separating element. The liquid part is connected to the hydraulic circuit. If a certain pressurized gas quantity is pressurized with a higher liquid pressure, the gas volume decreases with increasing liquid pressure whereas the gas pressure increases with the liquid pressure.


If the liquid pressure decreases, the extending gas presses the liquid back into the hydraulic system until the pressure is equalized again.

Bladder-type accumulators

Bladder-type accumulators consist of a seamlessly produced cylindrical pressure vessel (1) made of high-tensile steel.

The elastic bladder (2) mounted in the interior divides the accumulator into a gas and a fluid side.

Via the gas valve (4), the bladder is filled with nitrogen to the provided gas filling pressure p_0 .

If the fluid is now pressed into the accumulator, the gas in the bladder is compressed and in this way, a pressure increase is achieved. The gas volume decreases and on the fluid side, the fluid can flow into the accumulator. As soon as the pressure on the fluid side decreases under the gas pressure, the accumulator is emptied.

In the bladder-type accumulator oil port, there is the oil valve (3) which closes if the pressure on the gas side exceeds the pressure on the fluid side. In this way, exit of the bladder into the oil channel and destruction of the bladder are avoided.

If the minimum operating pressure is reached, a small fluid volume (approx. 10 % of the hydraulic accumulator nominal volume) is to remain between bladder and oil valve so that the bladder does not hit the valve in every expansion process. The gas valve (4) consists of sealing cap (4.1), gas valve insert (4.2) and gas filling valve body (4.3). These parts can be exchanged individually.

The type cap (7) contains the technical data and features of the hydraulic accumulator.

Symbol

Technical Data (For applications outside these parameters, please consult us!)

general											
Weight		kg	See table	e page 11							
Design			Bladder-type accumulator								
Installation position			Fluid connection socket at the bottom, others on request								
Mounting type		with clan	nps and co	onsole							
Ambient temperature range		°C	-15 to +6	65 ¹⁾							
Line connection			Screw-in	thread							
hydraulic											
Nominal volume	V _{nom}	I	1	2.5	4	6	10	20	35	50	
Effective gas volume	V _{eff}	I	1.0	2.4	3.7	5.9	9.2	18.1	33.4	48.7	
Max. adm. flow	q _{max}	l/min	240	600	600	600	900	900	900	900	
Max. admissible operating pressure	P _{max}	bar	350	350	350	350	330	330	330	330	
Max. adm. pressure fluctuation range	Δp_{dyn}	bar	200	200	200	200	200	200	200	200	
Operating pressures and use	ful volume	S	See calc	ulation pa	ge 5 to 10						
Hydraulic fluid			Hydraulio	c oil accor	ding to DI	N 51524; d	other liquid	ds on requ	est!		
Hydraulic fluid temperature ra Others on request	°C	-15 to +80 (NBR) -35 to +80 (ECO)									
pneumatic											
Charging gas			Nitrogen	, purity cla	ss 4.0, N ₂	= 99.99 v	ol. %				
Gas filling pressure	p_0	bar	2								

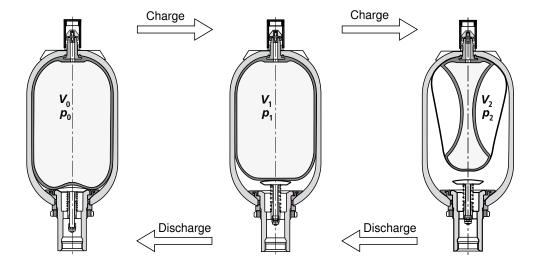
Hydraulic fluids that can be used

Hydraulic fluids	Temperature range	Material
Mineral oils	–15 to +80 °C	NBR
	–35 to +80 °C	ECO
HFC	–10 to +60 °C	NBR

For other hydraulic fluids and temperatures, please contact us.

NBR Acrylonitrile-butadiene rubber (Perbunan) ECO Epichlorhydrin rubber

Application, mode of operation


Applications

Hydro-pneumatic accumulators offer versatile applications:

- Energy storage for saving pump drive power in systems with intermittent operation.
- Energy reserve for emergencies, e.g. in case of hydraulic pump failure.
- Compensation of leakage losses.
- Shock and vibration absorption in periodic vibrations.
- Volume compensation in case of pressure and temperature changes.

Mode of operation

Liquids are almost incompressible and are therefore not able to store pressure energy. In hydro-pneumatic Rexroth accumulators, the compressibility of a gas is used for the fluid storage. You may **only** use nitrogen of cleanliness class 4.0! $N_2 = 99.99$ vol. %

Calculation

Pressures

In the accumulator calculation, the following pressures are of vital importance:

- *p*₀ = Gas filling pressure at room temperature and drained fluid chamber
- $p_0(t)$ = Gas filling pressure at operating temperature
- $p_0(t_{max})$ = Gas filling pressure at max. operating temperature
- p_1 = Minimum operating pressure
- p_2 = Maximum operating pressure

In order to achieve the best utilization of the accumulator volume possible as well as long service life, compliance with the following values is recommended:

 $p_0 (t_{\text{max}}) \approx 0.9 p_1$ (1)

The largest hydraulic pressure is not to exceed four times the filling pressure as otherwise, the bladder elasticity is greatly strained and excessive compression changes with considerable gas heating result:

$$p_2 \le 4 \cdot p_0 \tag{2}$$

The accumulator bladder service life is the longer the smaller the difference between p_1 and p_2 . This, however, results in the reduction in the corresponding degree of utilization of the maximum storage capacity.

Oil volume

According to the pressures $p_0 \dots p_2$, the gas volumes $V_0 \dots V_2$ result.

In this connection, V_0 is also the accumulator's nominal volume.

The available oil volume ΔV corresponds to the difference of the gas volumes V_1 and V_2 :

$$\Delta V \le V_1 - V_2 \tag{3}$$

The gas volume that can be changed within one pressure difference is determined by the following equations:

a) To isothermal changes of condition of gases, i.e. if the gas cushion changes so slowly that there is enough time for the complete heat exchange between the nitrogen and its environment and the temperature therefore remains constant, the following applies:

$$p_0 \cdot V_0 = p_1 \cdot V_1 = p_2 \cdot V_2$$
 (4.1)

Calculation diagram

Correction factor K_i and K_a

For the graphical determination, the formulas (4.1) and (4.2) in diagrams on pages 7 to 10 are implemented. Depending on the task, the available oil volume, the accumulator size or the pressures can be determined.

The equation (4.1) or (4.2) is only true for ideal gases. In the behavior of real gases, considerable deviations result at operating pressures of more than 200 bar, which have to be

considered by correction factors. They can be seen from the

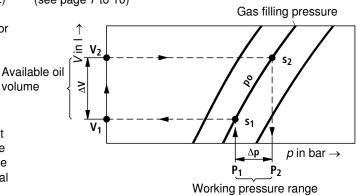
following diagrams. The correction factors by which the ideal

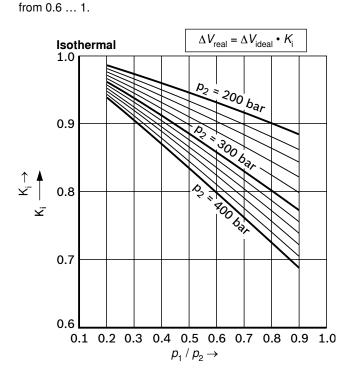
sampling volume ΔV is to be multiplied lie within the range

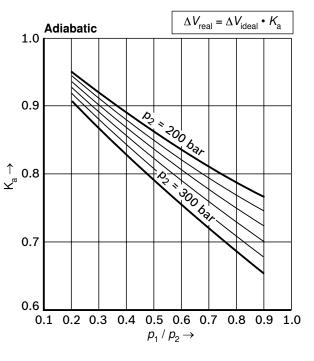
b) To **adiabatic changes of condition**, i.e. if the gas cushion changes quickly with the nitrogen temperature changing as well, the following applies:

$$\boxed{p_0 \cdot V_0^{\chi} = p_1 \cdot V_1^{\chi} = p_2 \cdot V_2^{\chi}} \quad (4.2)$$

 χ = Ratio of the specific heats of the gases (adiabatic exponent), for nitrogen = 1.4

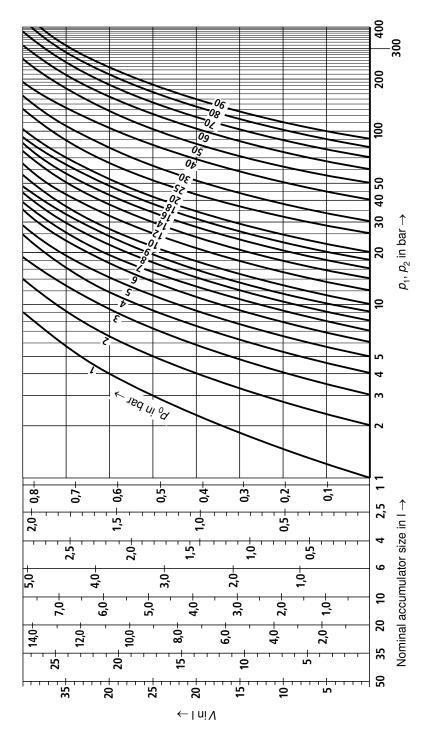

In practice, the changes of condition rather follow adiabatic laws. The charging is often isothermal, the discharge adiabatic.

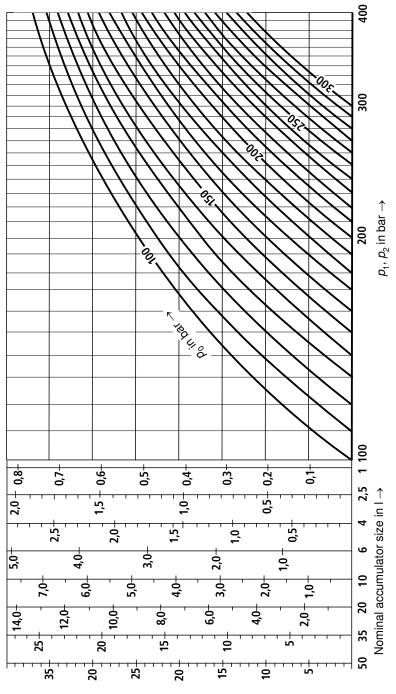

Considering the equations (1) and (2), V lies at Δ 50 % to 70 % of the nominal accumulator volume. As reference point, the following applies:


$$V_0 = 1.5 \dots 3 \times \Delta V$$
 (5)

Application of the calculation diagrams

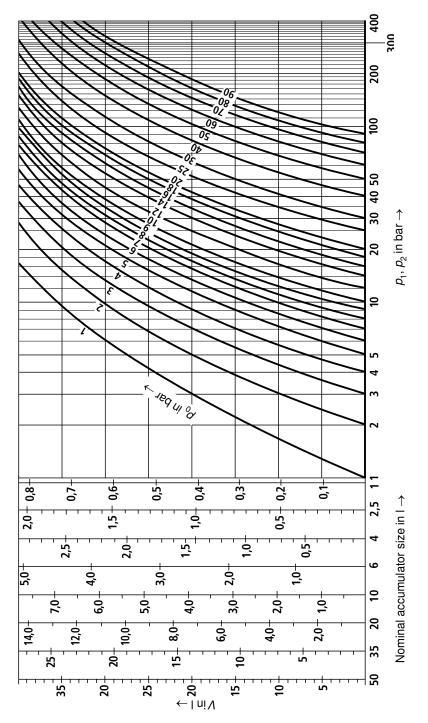
(see page 7 to 10)



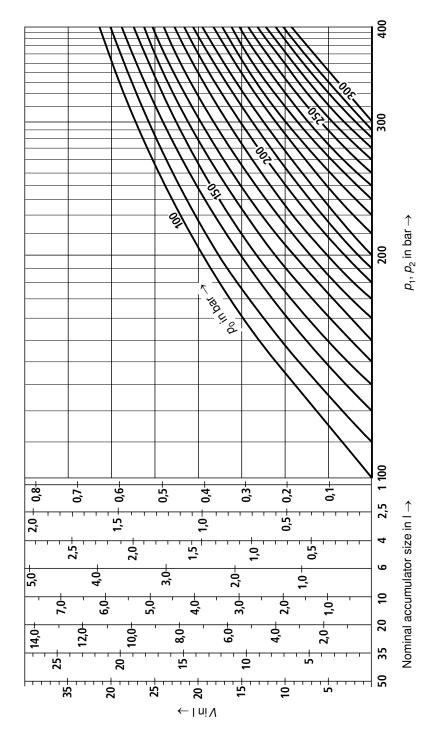

Isothermal changes in condition

 $p_0 = 1$ to 90 bar

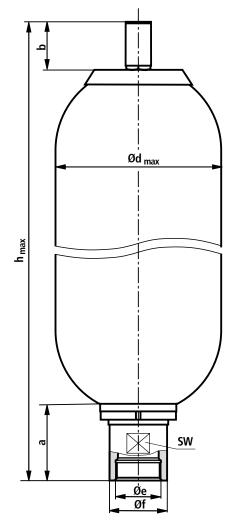
Isothermal changes in condition


```
p_0 = 100 to 300 bar
```


← l ni V

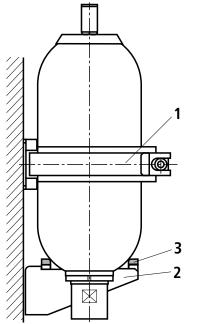

Adiabatic changes in condition

 $p_0 = 1$ to 90 bar



Adiabatic changes in condition

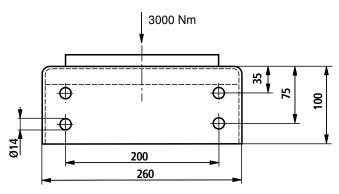
 $p_0 = 100 \text{ to } 300 \text{ bar}$



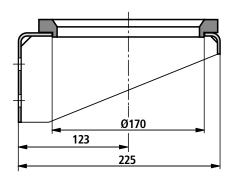
Unit dimensions, standard types (dimensions in mm)

Nominal Volume (liter)	Ordering code / Type	Material no.	h max	Ød max	а	b	Øe	Øf	sw	Weight kg
4	HAB1-350-4X/2G05G-2N111-BA	R901195131	333.5	115.5	56	70	G3/4"	36	32	5
1	HAB1-350-4X/2G05G-2N111-GOST	R901326058	333.5	115.5	50	70	U3/4	50	52	5
2.5	HAB2,5-350-4X/2G07G-2N111-CE	R901195135	554	115.5	69	70	G1 1/4"	50	50	10
2.5	HAB2,5-350-4X/2G07G-2N111-GOST	R901326059	554	115.5	09		G1 1/4"	53	50	
4	HAB4-350-4X/2G07G-2N111-CE	R901195136	438.5	170.0	67	70	G1 1/4"	53	50	16
4	HAB4-350-4X/2G07G-2N111-GOST	R901326060	436.5	170.0			GT 1/4	55		10
6	HAB6-350-4X/2G07G-2N111-CE	R901195139	564.5	170.0	67	70	G1 1/4"	53	50	20
0	HAB6-350-4X/2G07G-2N111-GOST	R901326061	564.5		07	70		55		20
10	HAB10-330-4X/2G09G-2N111-CE	R901195140	590.5	225.5	104	70	G2"	76	70	32
10	HAB10-330-4X/2G09G-2N111-GOST	R901326062	590.5	220.0	104	70	62	70		32
00	HAB20-330-4X/2G09G-2N111-CE	R901195141	000 5	005 5	104	70	G2"	76	70	50
20	HAB20-330-4X/2G09G-2N111-GOST	R901326063	900.5	225.5	104	70	62	70	/0	53
35	HAB35-330-4X/2G09G-2N111-CE	R901195143	1404	00E E	104	70	G2"	76	70	05
35	HAB35-330-4X/2G09G-2N111-GOST	R901326064	1424	225.5	104	70	62	/0	/0	85
50	HAB50-330-4X/2G09G-2N111-CE	R901195145	1040		104	70	<u> </u>	76	70	100
50	HAB50-330-4X/2G09G-2N111-GOST	R901326065	1940	225.5	104	70	G2"	70	70	123

HAB mounting elements

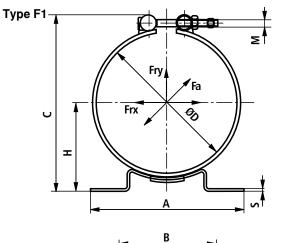

		Accumulator size							
Clamp type	Material no.	1	4		20				
		2.5	6	10	35	50			
Clamp 110-120	1531316021	1							
Clamp 160-170	1531316022		2						
Clamp 218-228	1531316026			1	2				
Clamp 224-230	1531316005					2			
Console	1531334008			1	1	1			
Rubber support ring	1530221042			1	1	1			

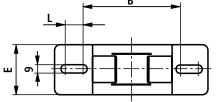
1 Clamp

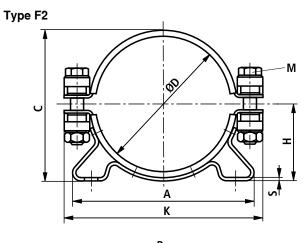

2 Console

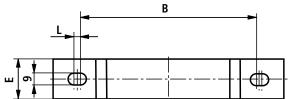
3 Rubber support ring

Console and rubber support ring





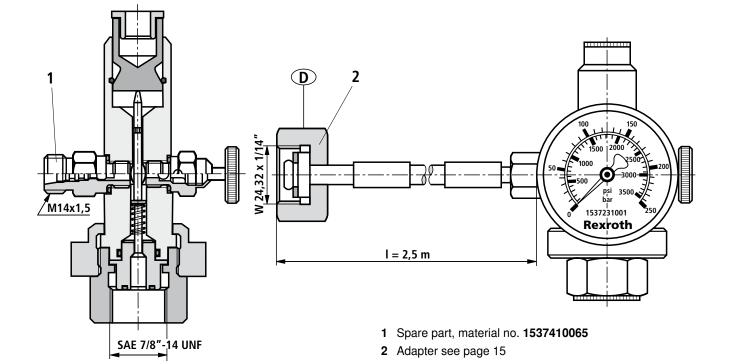



Rubber support ring Material no. 1530221042

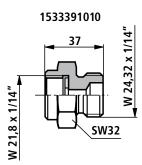
Mounting clamps

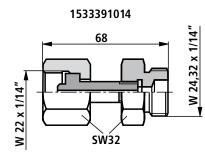
Oleman huma			Dimensions									
Clamp type		Α	В	С	ØD	Е	н	к	L	м	S	Material no.
Clamp 110-120	F1	135	96	150	110-120	50	64-69	-	6	M8	3	1531316021
Clamp 160-170	F1	237	147	200	160-170	50	90-95	-	35	M8	4	1531316022
Clamp 218-228	F1	237	147	258	218-228	50	120-125	-	35	M8	4	1531316026
Clamp 224-230	F2	254	212	244	224-230	30	120-123	295	4	M12	3	1531316005

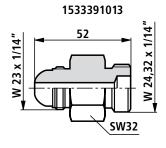
Filling and testing device

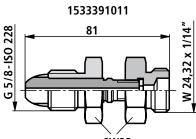


Measurement case	Material no.
Measurement case complete (HAB bladder-type accumulator)	0538103011
Case (separate)	R901070141
Filling and test valve	0538103005
Pressure gauge 0 to 250 bar	1537231001
Hose I = 2.5 m with transition socket Form \textcircled{D}	1530712005

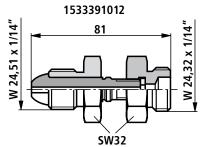

Supplementary parts to be ordered separately	Material no.
Pressure gauge 0 to 25 bar	R900033955
Pressure gauge 0 to 60 bar	1537231002
Pressure gauge 0 to 400 bar	1537231005
Transition socket Form 	1533391010
Form ^(B)	1533391011
Form B	1533391012
Form 🞯	1533391013
Form 🚇	1533391014
Form 🗐	1533391015
Hose I = 5 m with transition socket Form \textcircled{D}	1530712006

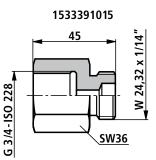

Dimensions filling and test valve

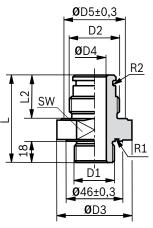

1 valve body with check valve, drain valve, pressure gauge connection and gas hose connection.



Adapter for nitrogen bottle to the cap nut






Country	1533391011	1533391010	1533391012	1533391014	1533391013	1533391015
Brazil	х					
Bulgaria	x					
France		x				
Greece	x					
Great Britain	x					
India	x					
Japan				x		
Canada			x			
North Korea					x	
South Korea					x	
Malaysia	x					
Rumania		x				
Russia						x
Spain	x					
Saudi Arabia		x				
Singapore	x					
Turkey	x					
USA			x			
Other countries	on request					

Accumulator adapter accumulator shut-off blocks Type ABZSS

Please select the corresponding type according to data sheet 50131

Connection socket for accumulator shut-off blocks size 20/DN20 Type 0532VAW according to data sheet 50128

Safety block		according to ISO 228			Dim	ensio	ons ir	n mm		Material no. socket	Order number complete with
D1	M _A in Nm	D2	<i>M</i> _A in Nm	L	L2	Ø D3	Ø D4	Ø D5	SW		seal rings R1 and R2
		G3/4	180 ⁺¹⁸	64	28	53	12	42	46	1533359038	R901252857
M33x2	310 ⁺³⁰	G1 1/4	450 +45	74	37	63	20	55	55	1533359039	R901252859
		G2	500 ⁺⁵⁰	85	44	90	30	75	80	1533359040	R901252860

ØD3

R2

SW

Transition socket from inch to metric threads D2 HAB ..- 1X to HAB ..- 4X ØD4 Material no. Nominal according to according to Dimensions in mm Order number volume ISO 228 ISO 228 socket complete with 2 liter seal ring R2 D2 D1 H L2 Ø Ø SW M_{A} M_{A} in Nm in Ńm D3 D4 180 +18 1 G3/4 180 + 18 M30x1.5 32 28 46 41 1533345047 R901252863 12 т 2.5 to 6 G1 1/4 450 +45 M40x1.5 400 +40 1533345048 R901252864 43 37 60 20 55 450 +45 10 to 50 G2 500 +50 M50x1.5 1533345049 R901252865 41 44 78 32 70 D1

Reducing unit for pipe connection

Nominal volume	according to ISO 228		according to ISO 228		Dimensions in mm					Material no. socket	Order number complete with		-	D2 ØD4		
liter	D2	<i>M</i> _A in Nm	D1	<i>M</i> _A in Nm	н	L2	Ø D3	Ø D4	SW		seal ring R2	Ŧ	-			<u>R2</u>
1	G3/4	180 +18	G3/8	70 ⁺⁷	8	28	38	12	32	1533345039	R901252880	L2	Í		٦ ۲	
2.5 to 6	G1 1/4	450 +45	G1/2	115 ⁺¹²	8	37	60	24	55	1533345043	R901252884	1			Ł	
	G1 1/4	450 +45	G3/4	180 +18	8	37	60	24	55	1533345040	R901252881	T				SW
10 to 50	G2	500 +50	G1/2	115 ⁺¹²	20	44	75	30	65	1533345044	R901252885				1	
	G2	500 +50	G3/4	180 ⁺¹⁸	20	44	75	30	65	1533345041	R901252882	1		 D1		
	G2	500 +50	G1	310 ⁺³¹	20	44	75	30	65	1533345045	1533345045			ØD3		
	G2	500 +50	G1 1/2	450 +45	40	44	75	32	65	1533345042	R901252883		•		•	

Intended use

Rexroth HAB..-4X bladder-type accumulators are intended for setting up hydraulic drive systems in the stationary machine and plant construction.

In mobile applications or applications in which acceleration forces act on the bladder-type accumulator during the intended use, use is only permitted after the prior release by the competent Bosch Rexroth product manager. Please contact the Technical Sales.

Safety instructions for hydraulic accumulators

For hydraulic accumulators, the provisions applicable at the place of installation are to be complied with before commissioning as well as during operation.

The operator will have sole responsibility for complying with existing provisions.

General information for hydraulic accumulators in hydraulic systems is provided by DIN EN ISO 4413.

Documents included in the delivery must be kept carefully; they will be required by the expert in recurring tests.

Rexroth HAB..-4X bladder-type accumulators are not intended for private use.

They must not be used in explosive environments in accordance with directive 94/9/EC (ATEX).

A Warning

Don't carry out welding, soldering or any other mechanical work at the accumulator tank!

Note!

- Risk of explosion in welding and soldering works!

- Danger of bursting and loss of the operating license in case of mechanical processing!

Don't charge hydraulic accumulators with oxygen or air. Risk of explosion!

Before working at hydraulic systems, depressurize the system and secure it against re-activation.

Improper assembly may cause serious injuries!

relief valve according to directive 97/23/EC.

The commissioning may only be performed by qualified specialists.

All vessel classes are to be secured by means of a pressure

Legal provisions

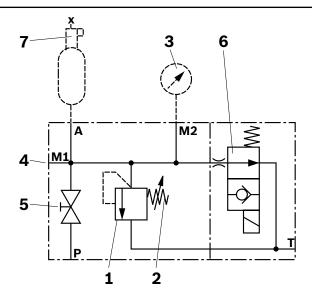
Hydraulic accumulators are pressure vessels and subject to the application national provisions and/or regulations valid at the place of installation.

In Germany, the Ordinance on Industrial Safety and Health (BetrSichV) applies.

Special rules are to be observed in shipbuilding, aircraft construction, mining, etc.

Safety devices

In Germany, the following safety equipment is necessary:


- 1 Equipment against excessive pressure (type-tested)
- 2 Discharge device
- **3** Pressure measurement device
- 4 Test pressure gauge connection
- 5 Shut-off device

Option:

- 6 Electro-magnetically operated discharge device
- 7 Safety device against excessive temperature

These safety devices are combined in a compact Bosch Rexroth accumulator safety block:

- Type ABZSS according to data sheet 50131
- Type 0532VAW according to data sheet 50128

Notes

Bosch Rexroth AG Hydraulics Zum Eisengießer 1 97816 Lohr am Main, Germany Phone +49 (0) 93 52 / 18-0 Fax +49 (0) 93 52 / 18-23 58 documentation@boschrexroth.de © This document, as well as the data, specifications and other information set forth in it, are the exclusive property of Bosch Rexroth AG. It may not be reproduced or given to third parties without its consent. The data specified above only serve to describe the product. No statements concerning a certain condition or suitability for a certain application can be derived from our information. The information given does not release the user from the obligation of own judgment and verification. It must be remembered that our products are subject to a natural process of wear and aging.